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Motivating Questions

•How good are popular approximate inference
methods at learning (deep) structured models
with discrete latent variables?
•Are there learning objectives that don’t require
sampling-based gradient estimators?

Main Idea

•TL;DR: Learn MRFs by minimizing what loopy
belief propagation (LBP) does, but faster, with
inference networks rather than message passing.
•Use the Bethe free energy (BFE) partition
function approximation; requires no sampling.
•This is only advantageous for undirected models.

Bethe Approximations

Notation:
•Let G = (V ∪ F , E) be a factor graph, with

x ⊆ V observed and z ⊆ V latent.
•Let Ψα be potential associated with factor α and

xα, zα be participating subvectors.
•Z(θ) = ∑

x′
∑

z′
∏
α Ψα(x′α, z′α; θ).

•Z(x,θ) = ∑
z′
∏
α Ψα(xα, z′α; θ).

BFE (Bethe, 1935; Yedidia et al., 2001):
F (τ ,θ) = KL[Qτ ||P (x, z; θ)]− logZ(θ)

=
∑
α

∑
x′α,z′α

τα(x′α, z′α) log τα(x′α, z′α)
Ψα(x′α, z′α)

−
∑
v∈V

(|ne(v)| − 1)
∑
v′
τv(v′) log τv(v′)

•Let τ α(xα, zα) be Ψα’s (pseudo) marginals, and
C contain all locally consistent assignments ∀α.
•For a tree, minτ ∈C F (τ ,θ) = − logZ(θ).
•Otherwise, minτ ∈C F (τ ,θ) ≈ − logZ(θ).
•Loopy BP finds stationary points of F (τ ,θ)
(Yedidia et al., 2001).

Why the BFE is Attractive

•Only linear in the number of factors!
•But, having many low-degree factors is only
interesting for MRFs (c.f., products of experts
(Hinton, 2002)).

A BFE-based Objective

•Replace partition functions in the log marginal
with their BFE approximations:
log P̃ (x; θ) + min

τ∈C
F (τ ) ≈ log P̃ (x; θ)− logZ(θ)

•Gives rise to a saddle-point objective:

min
θ

[
− log P̃ (x; θ)−min

τ∈C
F (τ ,θ)

]

= min
θ

max
τ∈C

[
− log P̃ (x; θ)− F (τ ,θ)

]
• If there are latents:

min
θ

[
min

τ x∈Cx
F (τ x,θ)−min

τ∈C
F (τ ,θ)

]

= min
θ,τ x

max
τ∈C

[F (τ x,θ)− F (τ ,θ)]

Amortized Inference

•Train inference networks f (·; φ), fx(·; φx) to
approximately minimize F (τ ,θ), F (τ x,θ).
•But predicted pseudo-marginals must normalize
and be locally consistent.
•Define τ α(xα, zα; φ) = softmax(f(G, α; φ)).
•Obtain predicted node-marginals as:

τ v(v; φ) = 1
|ne(v)|

∑
α∈ne(v)

∑
x′α,z′α\v

τ α(x′α, z′α; φ)

•Handle local consistency by penalizing deviation
from τ v(v; φ).
•Final objective:

min
θ

max
φ

[
− log P̃ (x; θ)− F (τ (φ),θ) (1)

− λ
∑
v∈V

α∈ne(v)

d
(
τ v(v; φ),

∑
x′α,z′α\v

τ α(x′α, z′α; φ)
)]

• If there are latents, replace − log P̃ with
F (τ x,θ) and add additional penalty terms for
φx.

Learning

Alternating Gradient Ascent/Descent:
•Take I1 gradient ascent steps on (1) wrt φ.
• If there are latents, take I2 gradient descent steps
on (1) wrt φx.
•Take a gradient descent step on (1) wrt θ.

Ising Models

Just inference:

Figure 1 Approximate marginals (x-axis) against the true
marginals (y-axis) for a 15 × 15 Ising model. Top: node
marginals; bottom: pairwise factor marginals.

Learning:

n True Ent. Rand. Init Exact Mean Field LBP Inf. Net
5 6.27 45.62 6.30 7.35 7.17 6.47
10 25.76 162.53 25.89 29.70 28.34 26.80
15 51.80 365.36 52.24 60.03 59.79 54.91

Table 1 Held out NLL. ’True Ent.’ is NLL under the true
model (i.e. EP (x;θ)[− logP (x; θ)]), and ’Exact’ trains with the
exact partition function. The Inf. Net is a 1-layer Transformer
(Vaswani et al., 2017).

Restricted Boltzmann Machines

•Following Kuleshov & Ermon (2017), we train
RBMs with 100 hidden units on the UCI digits
dataset.
•We compare with persistent contrastive
divergence (Tieleman, 2008), LBP (10 random
sweeps), and the variational approach of
Kuleshov & Ermon (2017).
•Our inference network runs a bidirectional LSTM
(Hochreiter & Schmidhuber, 1997) over the
linearized graph.

NLL `F Speedup
Loopy BP 25.47 53.02 1
Inference Network 23.43 23.11 1544x
PCD 21.24 N/A 21617x
Kuleshov & Ermon (2017) ≥ 24.5

Table 2 Held out average NLL of RBMs, as estimated by AIS
(Salakhutdinov & Murray, 2008).

High-order HMMs
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Figure 2 Top: standard 3rd order HMM; bottom: pairwise,
product-of-expert MRF HMM.

Why?
•Approximate inference techniques can be
evaluated exactly.
•Natural to define an undirected HMM analog.
Experiments:
• 3rd order neural HMM (Tran et al., 2016), on
Penn Treebank sentences, K = 30.
•We compare average NLL of exact inference,
discrete VAE variants, LBP and amortized BFE
minimization.

Directed/VAE models:
•Neural HMM: emission and transition
distributions parameterized by feed-fwd nets.
•Mean-field (MF) inf. net: BLSTM over input
into linear decoder for each token.
•First-order (FO) inf. net: 1st order neural HMM;
conditions on averaged BLSTM states of input.

MRF/Bethe models:
•Pairwise MRF HMM: transition factors are
feed-fwd function of distance; emissions as above.
•Bethe inf. net: BLSTM over embeddings of MRF
nodes into linear to predict marginals.

Results:
NLL -ELBO/`F,z Speedup

Exact 105.66 105.66 1.00
Mean-Field VAE + BL 119.27 175.46 1.67
Mean-Field IWAE-10 119.20 167.71 0.16
1st Order HMM VAE 118.35 118.88 0.73
Exact 104.07 104.07 1.12
LBP 108.74 99.89 0.55
Inference Network 115.86 114.75 1.96

Table 3 Top: directed HMM models; bottom: undirected,
pairwise HMM variant.


