Motivating Questions

- How good are popular approximate inference methods at learning (deep) structured models with discrete latent variables?
- Are there learning objectives that don't require sampling-based gradient estimators?

Main Idea

- **TL;DR:** Learn MRFs by minimizing what loopy belief propagation (LBP) does, but faster, with inference networks rather than message passing.
- Use the Bethe free energy (BFE) partition function approximation; requires no sampling.
- This is only advantageous for undirected models.

Bethe Approximations

Notation:

- Let $\mathcal{G} = (\mathcal{V} \cup \mathcal{F}, \mathcal{E})$ be a factor graph, with $\mathbf{x} \subseteq \mathcal{V}$ observed and $\mathbf{z} \subseteq \mathcal{V}$ latent.
- Let Ψ_{α} be potential associated with factor α and $\mathbf{x}_{\alpha}, \mathbf{z}_{\alpha}$ be participating subvectors.
- $Z(\boldsymbol{\theta}) = \sum_{\mathbf{x}'} \sum_{\mathbf{z}'} \prod_{\alpha} \Psi_{\alpha}(\mathbf{x}'_{\alpha}, \mathbf{z}'_{\alpha}; \boldsymbol{\theta}).$
- $Z(\mathbf{x}, \boldsymbol{\theta}) = \sum_{\mathbf{z}'} \prod_{\alpha} \Psi_{\alpha}(\mathbf{x}_{\alpha}, \mathbf{z}_{\alpha}'; \boldsymbol{\theta}).$
- **BFE** (Bethe, 1935; Yedidia et al., 2001):

$$\begin{aligned} \mathbf{T}(\boldsymbol{\tau}, \boldsymbol{\theta}) &= \mathrm{KL}[Q_{\boldsymbol{\tau}} || P(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})] - \log Z(\boldsymbol{\theta}) \\ &= \sum_{\alpha} \sum_{\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}'} \tau_{\alpha}(\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}') \log \frac{\tau_{\alpha}(\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}')}{\Psi_{\alpha}(\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}')} \\ &- \sum_{v \in \mathcal{V}} (|\mathrm{ne}(v)| - 1) \sum_{v'} \tau_{v}(v') \log \tau_{v}(v') \end{aligned}$$

- Let $\boldsymbol{\tau}_{\alpha}(\mathbf{x}_{\alpha}, \mathbf{z}_{\alpha})$ be Ψ_{α} 's (pseudo) marginals, and \mathcal{C} contain all locally consistent assignments $\forall \alpha$.
- For a tree, $\min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}, \boldsymbol{\theta}) = -\log Z(\boldsymbol{\theta}).$
- Otherwise, $\min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}, \boldsymbol{\theta}) \approx -\log Z(\boldsymbol{\theta}).$
- Loopy BP finds stationary points of $F(\boldsymbol{\tau}, \boldsymbol{\theta})$ (Yedidia et al., 2001).

Why the BFE is Attractive

- Only linear in the number of factors!
- But, having many low-degree factors is only interesting for MRFs (c.f., products of experts (Hinton, 2002)).

Amortized Bethe Free Energy Minimization for Learning MRFs

Sam Wiseman and Yoon Kim

A BFE-based Objective

• Replace partition functions in the log marginal with their BFE approximations: $\log \tilde{P}(\mathbf{x}; \boldsymbol{\theta}) + \min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}) \approx \log \tilde{P}(\mathbf{x}; \boldsymbol{\theta}) - \log Z(\boldsymbol{\theta})$ • Gives rise to a saddle-point objective: $\min_{\boldsymbol{\theta}} \left| -\log \tilde{P}(\mathbf{x}; \boldsymbol{\theta}) - \min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}, \boldsymbol{\theta}) \right|$ $= \min_{\boldsymbol{\theta}} \max_{\boldsymbol{\tau} \in \mathcal{C}} \left[-\log \tilde{P}(\mathbf{x}; \boldsymbol{\theta}) - F(\boldsymbol{\tau}, \boldsymbol{\theta}) \right]$ • If there are latents: $\min_{\boldsymbol{\theta}} \left| \min_{\boldsymbol{\tau}_{\mathbf{x}} \in \mathcal{C}_{\mathbf{x}}} F(\boldsymbol{\tau}_{\mathbf{x}}, \boldsymbol{\theta}) - \min_{\boldsymbol{\tau} \in \mathcal{C}} F(\boldsymbol{\tau}, \boldsymbol{\theta}) \right|$ $= \min_{\boldsymbol{\theta}, \boldsymbol{\tau}_{\mathbf{x}}} \max_{\boldsymbol{\tau} \in \mathcal{C}} \left[F(\boldsymbol{\tau}_{\mathbf{x}}, \boldsymbol{\theta}) - F(\boldsymbol{\tau}, \boldsymbol{\theta}) \right]$ **Amortized Inference** • Train inference networks $f(\cdot; \phi), f_{\mathbf{x}}(\cdot; \phi_{\mathbf{x}})$ to approximately minimize $F(\boldsymbol{\tau}, \boldsymbol{\theta}), F(\boldsymbol{\tau}_{\mathbf{x}}, \boldsymbol{\theta}).$ • But predicted pseudo-marginals must normalize and be locally consistent. • Define $\boldsymbol{\tau}_{\alpha}(\mathbf{x}_{\alpha}, \mathbf{z}_{\alpha}; \boldsymbol{\phi}) = \operatorname{softmax}(\mathbf{f}(\boldsymbol{\mathcal{G}}, \alpha; \boldsymbol{\phi})).$ • Obtain predicted node-marginals as: $\boldsymbol{\tau}_{v}(v;\boldsymbol{\phi}) = \frac{1}{|\mathrm{ne}(v)|} \sum_{\alpha \in \mathrm{ne}(v)} \sum_{\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}' \setminus v} \boldsymbol{\tau}_{\alpha}(\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}'; \boldsymbol{\phi})$ • Handle local consistency by penalizing deviation from $\boldsymbol{\tau}_{v}(v;\boldsymbol{\phi})$. • Final objective: $\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left| -\log \tilde{P}(\mathbf{x}; \boldsymbol{\theta}) - F(\boldsymbol{\tau}(\boldsymbol{\phi}), \boldsymbol{\theta}) \right|$ (1) $-\lambda \sum_{\substack{v \in \mathcal{V} \\ \alpha \in \operatorname{ne}(v)}} d(\boldsymbol{\tau}_{v}(v; \boldsymbol{\phi}), \sum_{\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}' \setminus v} \boldsymbol{\tau}_{\alpha}(\mathbf{x}_{\alpha}', \mathbf{z}_{\alpha}'; \boldsymbol{\phi})) \Big]$ • If there are latents, replace $-\log \tilde{P}$ with $F(\boldsymbol{\tau}_{\mathbf{x}}, \boldsymbol{\theta})$ and add additional penalty terms for ϕ_{x} . Learning

Alternating Gradient Ascent/Descent:

- Take I_1 gradient ascent steps on (1) wrt ϕ .
- If there are latents, take I_2 gradient descent steps on (1) wrt $\boldsymbol{\phi}_{\mathbf{x}}$.
- Take a gradient descent step on (1) wrt $\boldsymbol{\theta}$.

Ising Models

Just inference:

Figure 1 Approximate marginals (x-axis) against the true marginals (y-axis) for a 15×15 Ising model. Top: node marginals; bottom: pairwise factor marginals.

Learning:

	True Ent.	Rand. Init	Exact	Mean Field	LBP	Inf. Net
	6.27	45.62	6.30	7.35	7.17	6.47
0	25.76	162.53	25.89	29.70	28.34	26.80
5	51.80	365.36	52.24	60.03	59.79	54.91

Table 1 Held out NLL. 'True Ent.' is NLL under the true model (i.e. $\mathbb{E}_{P(\mathbf{x};\boldsymbol{\theta})}[-\log P(\mathbf{x};\boldsymbol{\theta})]$), and 'Exact' trains with the exact partition function. The Inf. Net is a 1-layer Transformer (Vaswani et al., 2017).

Restricted Boltzmann Machines

• Following Kuleshov & Ermon (2017), we train RBMs with 100 hidden units on the UCI digits dataset.

• We compare with persistent contrastive divergence (Tieleman, 2008), LBP (10 random sweeps), and the variational approach of Kuleshov & Ermon (2017).

• Our inference network runs a bidirectional LSTM (Hochreiter & Schmidhuber, 1997) over the linearized graph.

	NLL	ℓ_F	Speedup
Loopy BP	25.47	53.02	1
Inference Network	23.43	23.11	1544x
PCD	21.24	N/A	21617x
Kuleshov & Ermon (2017)	≥ 24.5		

Table 2 Held out average NLL of RBMs, as estimated by AIS (Salakhutdinov & Murray, 2008).

Why?

Experiments:

Directed/VAE models:

MRF/Bethe models:

Results:

Ex Me Me 1stExa LB! Inf

Table 3 Top: directed HMM models; bottom: undirected, pairwise HMM variant.

High-order HMMs

Figure 2 Top: standard 3rd order HMM; bottom: pairwise, product-of-expert MRF HMM.

• Approximate inference techniques can be evaluated exactly.

• Natural to define an undirected HMM analog.

• 3rd order neural HMM (Tran et al., 2016), on Penn Treebank sentences, K = 30.

• We compare average NLL of exact inference, discrete VAE variants, LBP and amortized BFE minimization.

• Neural HMM: emission and transition distributions parameterized by feed-fwd nets. • Mean-field (MF) inf. net: BLSTM over input into linear decoder for each token.

• First-order (FO) inf. net: 1st order neural HMM; conditions on averaged BLSTM states of input.

• Pairwise MRF HMM: transition factors are feed-fwd function of distance; emissions as above. • Bethe inf. net: BLSTM over embeddings of MRF nodes into linear to predict marginals.

	NLL	-ELBO/ $\ell_{F,\mathbf{z}}$	Speedup
act	105.66	105.66	1.00
ean-Field $VAE + BL$	119.27	175.46	1.67
ean-Field IWAE-10	119.20	167.71	0.16
Order HMM VAE	118.35	118.88	0.73
act	104.07	104.07	1.12
SP .	108.74	99.89	0.55
erence Network	115.86	114.75	1.96